Tissue-specific activation of gene expression by the Synergistic Activation Mediator (SAM) CRISPRa system in mice

2021 
CRISPR-based transcriptional activation is a powerful tool for functional gene interrogation; however, delivery difficulties have limited its applications in vivo. Here, we created a mouse model expressing all components of the CRISPR-Cas9 guide RNA-directed Synergistic Activation Mediator (SAM) from a single transcript that is capable of activating target genes in a tissue-specific manner. We optimized Lipid Nanoparticles and Adeno-Associated Virus guide RNA delivery approaches to achieve expression modulation of one or more genes in vivo. We utilized the SAM mouse model to generate a hypercholesteremia disease state that we could bidirectionally modulate with various guide RNAs. Additionally, we applied SAM to optimize gene expression in a humanized Transthyretin mouse model to recapitulate human expression levels. These results demonstrate that the SAM gene activation platform can facilitate in vivo research and drug discovery. CRISPR-Cas9 is a gene editing tool that can be used to modulate gene expression. Here, the authors report the generation of a mouse model that express all components of the CRISPR-Cas9 guide directed Synergistic Activation Mediator (SAM), demonstrate that gene activation can be achieved with various delivery methods and include generation of a disease model of hypercholesterolemia
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    1
    Citations
    NaN
    KQI
    []