Realizing High Thermoelectric Performance in n-Type SnSe polycrystals via (Pb, Br) Co-doping and Multi-Nanoprecipitates Synergy

2021 
Abstract Both p- and n-type single crystals SnSe have been reported to possess high performance thermoelectric performances, thus highlighting the possibility for commercialization. Polycrystalline SnSe that has better mechanical properties however possesses inferior thermoelectric properties compared to single crystal SnSe. In this work, n-type polycrystalline SnSe0.95 + x wt% PbBr2 (x = 0, 0.5, 1, and 1.5) samples were synthesized by combining mechanical alloying and spark plasma sintering technology. The effects of PbBr2 doping on thermoelectric performance of SnSe were studied in detail. The results show that the carrier concentration was dramatically increased from 2.51×1017 cm-3 in pure SnSe0.95 to 1.79×1019 cm-3 in SnSe0.95 + 1.5 wt% PbBr2, further resulting in an enhanced electrical conductivity. Multi-nanoprecipitates are present in the samples, including SnO, SnPb and SnBrxOy, which possibly affect the Seebeck coefficient and the lattice thermal conductivity. A peak ZT value of 1.1 was obtained at 773 K for the SnSe0.95 + 1.0 wt% PbBr2 sample. This work highlights that PbBr2 is an effective dopant to improve the TE performance of n-type polycrystalline SnSe.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    2
    Citations
    NaN
    KQI
    []