language-icon Old Web
English
Sign In

Dislocations in graphene

2008 
We study the stability and evolution of various elastic defects in a flat graphene sheet and the electronic properties of the most stable configurations. Two types of dislocations are found to be stable: 'glide' dislocations consisting of heptagon-pentagon pairs, and 'shuffle' dislocations, an octagon with a dangling bond. Unlike the most studied case of carbon nanotubes, Stone Wales defects seem to be dynamically unstable in the planar graphene sheet. Similar defects in which one of the pentagon-heptagon pairs is displaced vertically with respect to the other one are found to be dynamically stable. Shuffle dislocations will give rise to local magnetic moments that can provide an alternative route to magnetism in graphene.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    73
    Citations
    NaN
    KQI
    []