Traceable Quantitative Raman Microscopy and X-ray Fluorescence Analysis as Nondestructive Methods for the Characterization of Cu(In,Ga)Se2 Absorber Films

2016 
The traceability of measured quantities is an essential condition when linking process control parameters to guaranteed physical properties of a product. Using Raman spectroscopy as an analytical tool for monitoring the production of Cu(In1–xGax)Se2 thin-film solar cells, proper calibration with regard to chemical composition and lateral dimensions is a key prerequisite. This study shows how the multiple requirements of calibration in Raman microscopy might be addressed. The surface elemental composition as well as the integral elemental composition of the samples is traced back by reference-free X-ray fluorescence analysis. Reference Raman spectra are then generated for the relevant Cu(In1–xGax)Se2 related compounds. The lateral dimensions are calibrated with the help of a novel dimensional standard whose regular structures have been traced back to the International System of Units by metrological scanning force microscopy. On this basis, an approach for the quantitative determination of surface coverage...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    1
    Citations
    NaN
    KQI
    []