Proteomics Versus Clinical Data and Stochastic Local Search Based Feature Selection for Acute Myeloid Leukemia Patients’ Classification

2018 
The use of data issued from high throughput technologies in drug target problems is widely widespread during the last decades. This study proposes a meta-heuristic framework using stochastic local search (SLS) combined with random forest (RF) where the aim is to specify the most important genes and proteins leading to the best classification of Acute Myeloid Leukemia (AML) patients. First we use a stochastic local search meta-heuristic as a feature selection technique to select the most significant proteins to be used in the classification task step. Then we apply RF to classify new patients into their corresponding classes. The evaluation technique is to run the RF classifier on the training data to get a model. Then, we apply this model on the test data to find the appropriate class. We use as metrics the balanced accuracy (BAC) and the area under the receiver operating characteristic curve (AUROC) to measure the performance of our model. The proposed method is evaluated on the dataset issued from DREAM 9 challenge. The comparison is done with a pure random forest (without feature selection), and with the two best ranked results of the DREAM 9 challenge. We used three types of data: only clinical data, only proteomics data, and finally clinical and proteomics data combined. The numerical results show that the highest scores are obtained when using clinical data alone, and the lowest is obtained when using proteomics data alone. Further, our method succeeds in finding promising results compared to the methods presented in the DREAM challenge.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    4
    Citations
    NaN
    KQI
    []