Utilizing selective chlorination to synthesize new triangulenium dyes

2021 
Access to functionalization of new sites on the triangulenium core structure has been achieved at an early stage by chlorination with N-chlorosuccinimide (NCS), giving rise to two new triangulenium dyes (1 and 2). By introducing the chlorine functionalities in the acridinium precursor, positions complementary to those previously accessed by electrophilic aromatic substitution of the final dyes can be accesed. The chlorination is selective, giving only one regioisomer for both mono- and dichlorination products. For the monochlorinated acridinium compound a highly selective ring-closing reaction was discovered to generate only a single regioisomer of the cationic [4]helicene product. This discovery aspired further investigations into the mechanism of [4]helicene formation and to the first isolation of the previously proposed intermediate of the two-step SNAr reaction, key to all aza-bridged triangulenium and helicenium systems. A late stage functionalization of DAOTA+ with NCS gave rise to a different dichlorinated compound (2). The fully ring closed chlorinated triangulenium dyes 1, 2 and 3 show a redshift in absorption and emission relative to the non-chlorinated analogues, while still maintaining relatively high fluorescence quantum yields of 36%, 26%, and 41%, and long fluorescence lifetimes of 15 ns, 12.5 ns and 16 ns, respectively. Cyclic voltammetry shows that chlorination of the triangulenium dyes significantly lowers reduction potentials and thus allows for efficient tuning of redox and photo-redox properties.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []