Composition-Dependent Functionality of Copper Vanadate Photoanodes

2018 
To understand functional roles of constituent elements in ternary metal oxide photoanodes, essential photoelectrochemical (PEC) properties are systematically analyzed on a series of copper vanadate compounds with different Cu:V elemental ratios. Homogeneous and highly continuous thin films of β-Cu2V2O7, γ-Cu3V2O8, Cu11V6O26, and Cu5V2O10 are grown via reactive co-sputtering and their performance characteristics for the light-driven oxygen evolution reaction are evaluated. All four compounds have similar bandgaps in the range of 1.83–2.03 eV, though Cu-rich phases exhibit stronger optical absorption and higher charge separation efficiencies. Transient photocurrent analysis reveals a reduction of surface catalytic activity with increasing Cu:V elemental ratio due to competitive charge recombination at Cu-related surface states. This comprehensive analysis of PEC functionalities—including photon absorption, carrier separation, and heterogeneous charge transfer—informs strategies for improving PEC activity in...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    45
    Citations
    NaN
    KQI
    []