A new fitting function for GRB MeV spectra based on the internal shock synchrotron model
2020
While the Band function or other phenomenological functions are commonly used to fit GRB prompt emission spectra, we propose a new parametric function that is inspired by an internal shock physical model. We use this function as a proxy of the model to confront it easily to GRB observations. We built a parametric function that represents the spectral form of the synthetic bursts provided by our internal shock synchrotron model (ISSM). We simulated the response of the Fermi instruments to the synthetic bursts and fitted the obtained count spectra to validate the ISSM function. Then, we applied this function to a sample of 74 bright GRBs detected by the Fermi/GBM, and we computed the width of their spectral energy distributions around their peak energy. For comparison, we fitted also the phenomenological functions that are commonly used in the literature. Finally, we performed a time-resolved analysis of the broadband spectrum of GRB 090926A, which was jointly detected by the Fermi GBM and LAT. The ISSM function reproduces 81% of the spectra in the GBM bright GRB sample, versus 59% for the Band function, for the same number of parameters. It gives also relatively good fits to the GRB 090926A spectra. The width of the MeV spectral component that is obtained from the fits of the ISSM function is slightly larger than the width from the Band fits, but it is smaller when observed over a wider energy range. Moreover, all of the 74 analysed spectra are found to be significantly wider than the synthetic synchrotron spectra. We discuss possible solutions to reconcile the observations with the internal shock synchrotron model, such as an improved modeling of the shock micro-physics or more accurate spectral measurements at MeV energies.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
74
References
0
Citations
NaN
KQI