Robustness of Approaches to ROC Curve Modeling under Misspecification of the Underlying Probability Model

2013 
A variety of statistical regression models have been proposed for the comparison of ROC curves for different markers across covariate groups. Pepe developed parametric models for the ROC curve that induce a semiparametric model for the market distributions to relax the strong assumptions in fully parametric models. We investigate the analysis of the power ROC curve using these ROC-GLM models compared to the parametric exponential model and the estimating equations derived from the usual partial likelihood methods in time-to-event analyses. In exploring the robustness to violations of distributional assumptions, we find that the ROC-GLM provides an extra measure of robustness.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    6
    Citations
    NaN
    KQI
    []