AWESAM: A Python Module for Automated Volcanic Event Detection Applied to Stromboli

2021 
Many active volcanoes in the world exhibit Strombolian activity, which is typically characterized by relatively frequent mild events and also by rare and much more destructive major explosions and paroxysms. Detailed analyses of past major and minor events can help to understand the eruptive behavior of the volcano and the underlying physical and chemical processes. Catalogs of volcanic eruptions may be established using continuous seismic recordings at stations in the proximity of volcanoes. However, in many cases, the analysis of the recordings relies heavily on the manual picking of events by human experts. Recently developed Machine Learning-based approaches require large training data sets which may not be available a priori. Here, we propose an alternative automated approach: the Adaptive-Window Volcanic Event Selection Analysis Module (AWESAM). This process of creating event catalogs consists of three main steps: (i) identification of potential volcanic events based on squared ground-velocity amplitudes, an adaptive MaxFilter, and a prominence threshold. (ii) catalog consolidation by comparing and verification of the initial detections based on recordings from two different seismic stations. (iii) identification and exclusion of signals from regional tectonic earthquakes. The software package is applied to publicly accessible continuous seismic recordings from two almost equidistant stations at Stromboli volcano in Italy. We tested AWESAM by comparison with a hand-picked catalog and found that around 95 percent of the eruptions with a signal-to-noise ratio above three are detected. In a first application, we derive a new amplitude-frequency relationship from over 290.000 volcanic events at Stromboli during 2019-2020. The module allows for a straightforward generalization and application to other volcanoes worldwide.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    0
    Citations
    NaN
    KQI
    []