Photoluminescence of nanocomposites of liquid-crystalline polymers and cadmium selenide quantum dots

2014 
The role of specific interactions between a polymer matrix and incorporated quantum dots is one of the critical problems for understanding the effect of the polymer matrix on the optical properties of quantum dots in a nanocomposite material and for creating new photonic materials and related instruments. In this study, cadmium selenide quantum dots have been incorporated into a liquid-crystalline polymer via the interaction of carboxyl groups of the polymer with the quantum-dot surfaces through ionic bonds. From the data of transmission electron microscopy, it has been shown that this interaction provides the localization of quantum dots in the environment of the liquid-crystalline phase of the polymer. Various features of photoluminescent properties have been observed and interpreted in terms of the emission recombination of excitons in CdSe quantum dots, light reabsorption by quantum dots, the effect of the electronic states on the surface CdSe-liquid crystal, and the energy transfer from quantum dots to the polymer liquid-crystalline matrix.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    3
    Citations
    NaN
    KQI
    []