Nitric Oxide Turn-on Fluorescent Probe Based on Deamination of Aromatic Primary Monoamines

2012 
The stable, water-soluble, and nonfluorescent FA-OMe can sense nitric oxide (NO) and form the intensely fluorescent product dA-FA-OMe via reductive deamination of the aromatic primary amine. The reaction is accompanied by a notable increase of the fluorescent quantum yield from 1.5 to 88.8%. The deamination mechanism of FA-OMe with NO was proposed in this study. The turn-on fluorescence signals were performed by suppression of photoinduced electron transfer (PeT), which was demonstrated by density functional theory (DFT) calculations of the components forming FA-OMe and dA-FA-OMe. Furthermore, FA-OMe showed water solubility and good stability at physiological pHs. Moreover, the selectivity study indicated that FA-OMe had high specificity for NO over other reactive oxygen/nitrogen species. In an endogenously generated NO detection study, increasing the incubation time of FA-OMe with lipopolysaccharide (LPS) pretreated Raw 264.7 murine macrophages could cause an enhanced fluorescence intensity image. In add...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    79
    Citations
    NaN
    KQI
    []