Correlation of bio-optical properties with photosynthetic pigment and microorganism distribution in microbial mats from Hamelin Pool, Australia

2019 
: Microbial mats and stromatolites are widespread in Hamelin Pool, Shark Bay, however the phototrophic capacity of these systems is unknown. This study has determined the optical properties and light-harvesting potential of these mats with light microsensors. These characteristics were linked via a combination of 16S rDNA sequencing, pigment analyses and hyperspectral imaging. Local scalar irradiance was elevated over the incident downwelling irradiance by 1.5-fold, suggesting light trapping and strong scattering by the mats. Visible light (400-700 nm) penetrated to a depth of 2 mm, whereas near-infrared light (700-800 nm) penetrated to at least 6 mm. Chlorophyll a and bacteriochlorophyll a (Bchl a) were found to be the dominant photosynthetic pigments present, with BChl a peaking at the subsurface (2-4 mm). Detailed 16S rDNA analyses revealed the presence of putative Chl f-containing Halomicronema sp. and photosynthetic members primarily decreased from the mat surface down to a depth of 6 mm. Data indicated high abundances of some pigments and phototrophic organisms in deeper layers of the mats (6-16 mm). It is proposed that the photosynthetic bacteria present in this system undergo unique adaptations to lower light conditions below the mat surface, and that phototrophic metabolisms are major contributors to ecosystem function.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    9
    Citations
    NaN
    KQI
    []