Evolution Of Dna Packaging In Gene Transfer Agents

2021 
Gene transfer agents (GTAs) are virus-like particles encoded and produced by many bacteria and archaea. Unlike viruses, GTAs package fragments of the host genome instead of the genes that encode the components of the GTA itself. As a result of this non-specific DNA packaging, GTAs can transfer genes within bacterial and archaeal communities. GTAs clearly evolved from viruses and are thought to have been maintained in prokaryotic genomes due to the advantages associated with their DNA transfer capacity. The most-studied GTA is produced by the alphaproteobacterium Rhodobacter capsulatus (RcGTA), which packages random portions of the host genome at a lower DNA density than usually observed in tailed bacterial viruses. How the DNA packaging properties of RcGTA evolved from those of the ancestral virus remains unknown. To address this question, we reconstructed the evolutionary history of the large subunit of the terminase (TerL), a highly conserved enzyme used by viruses and GTAs to package DNA. We found that RcGTA-like TerLs grouped within viruses that employ the headful packaging strategy. Because distinct mechanisms of viral DNA packaging correspond to differences in the TerL amino acid sequence, our finding suggests that RcGTA evolved from a headful packaging virus. Headful packaging is the least sequence-specific mode of DNA packaging, which would facilitate the switch from packaging of the viral genome to packaging random pieces of the host genome during GTA evolution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    5
    Citations
    NaN
    KQI
    []