Towards Zn-dominant Tourmaline: a Case of Zn-rich Fluor-Elbaite and Elbaite from the Julianna System at Piława Górna, Lower Silesia, SW Poland

2018 
Tourmalines are a group of minerals which may concentrate various accessory components, e.g., Cu, Ni, Zn, Bi, Ti, and Sn. The paper presents fluor-elbaite and elbaite from a dyke of the Julianna pegmatitic system at Pilawa Gorna, at the NE margin of the Bohemian Massif, SW Poland, containing up to 6.32 and 7.37 wt % ZnO, respectively. Such high amounts of ZnO are almost two times higher than in the second most Zn-enriched tourmaline known to date. The compositions of the Zn-rich tourmalines from Pilawa Gorna, studied by electron micropropy and Raman spectroscopy, correspond to the formulae: X(Na0.733Ca0.013☐0.254)Σ1Y(Al1.033Li0.792Zn0.755Fe2+0.326Mn0.094)Σ3ZAl6(TSi6O18)(BO3)3V(OH)3W(F0.654OH0.344), and X(Na0.779Ca0.015☐0.206)Σ1Y(Al1.061Li0.869Zn0.880Fe2+0.098Mn0.094)Σ3ZAl6(TSi6O18)(BO3)3V(OH)3W(OH0.837F0.163), respectively, with Zn as one of the main octahedral occupants. A comparison with other tourmalines and associated Zn-rich fluor-elbaite and elbaite from the pegmatite indicates that atypically high Zn-enrichment is not a result of Zn-Fe fractionation, but dissolution and reprecipitation induced by a late (Na,Li,B,F)-bearing fluid within the assemblage of gahnite spinel and primary schorl-type tourmaline. This strongly suggests Na-Li-B-F metasomatism of gahnite-bearing mineral assemblages as that is the only environment that can promote crystallization of a hypothetical Zn-dominant tourmaline. The compositions of the Zn-rich fluor-elbaite and elbaite suggest three possible end-members for such a hypothetical tourmaline species: NaZn3Al6(Si6O18)(BO3)3(OH)3(OH), ☐(Zn2Al)Al6(Si6O18)(BO3)3(OH)3(OH) and Na(Zn2Al)Al6(Si6O18)(BO3)3(OH)3O by analogy with other tourmalines with divalent Y occupants, such as schorl/foitite/oxy-schorl and dravite/magnesio-foitite/oxy-dravite.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []