Cerebrovascular MRI in the mouse without an exogenous contrast agent

2019 
PURPOSE: To assess the effect of a variety of anesthetic regimes on T 2 * -weighted MRI of the mouse brain and to determine the optimal regimes to perform T 2 * -weighted MRI of the mouse cerebrovasculature without a contrast agent. METHODS: Twenty mice were imaged with a 3D T 2 * -weighted sequence under isoflurane, dexmedetomidine, or ketamine-xylazine anesthesia with a fraction of inspired oxygen varied between 10% and 95% + 5% CO2 . Some mice were also imaged after an injection of an iron oxide contrast agent as a positive control. For every regime, whole brain vessel conspicuity was visually assessed and the apparent vessel density in the cortex was quantified and compared. RESULTS: The commonly used isoflurane anesthetic leads to poor vessel conspicuity for fraction of inspired oxygen higher or equal to 21%. Dexmedetomidine and ketamine-xylazine enable the visualization of a significantly larger portion of the vasculature for the same breathing gas. Under isoflurane anesthesia, the fraction of inspired oxygen must be lowered to between 10% and 14% to obtain similar vessel conspicuity. Initial results on automatic segmentation of veins and arteries using the iron oxide positive control are also reported. CONCLUSION: T 2 * -weighted MRI in combination with an appropriate anesthetic regime can be used to visualize the mouse cerebrovasculature without a contrast agent. The differences observed between regimes are most likely caused by blood-oxygen level dependent effects, highlighting the important impact of the anesthetic regimes on cerebral blood oxygenation of the mouse brain at rest.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    1
    Citations
    NaN
    KQI
    []