DELETION OF THE FIBER GENE INDUCES THE STORAGE OF HEXON AND PENTON BASE PROTEINS IN PML/SP100-CONTAINING INCLUSIONS DURING ADENOVIRUS INFECTION

1999 
The present study has documented changes in the in situ distribution of viral DNA and capsid proteins in 293 cells infected with fiber gene-deleted adenoviruses. It shows that infection results in the intense production of progeny viruses which appear morphologically intact although they are devoid of fiber-coding sequence in their genome and hence of fiber protein in their capsid. The data confirm, therefore, that fiber protein is not essential for the assembly of progeny viruses. The main contribution of our observations concerns specific intranuclear structures induced by infection with either wild-type or fiber gene-deleted viruses. These clear amorphous inclusions contain two cellular proteins, PML and Sp100, which in non-infected cells co-localize to a special type of nuclear bodies. PML and Sp100 nuclear bodies appear to directly modulate or to be altered in a wide variety of situations including viral infections, cell death and transformation. In cells infected with fiber gene-deleted viruses, the clear amorphous inclusions now accumulate non-used hexon and penton base proteins, whereas the absence of fiber protein prevents the assembly of capsid proteins in crystallin arrays. Taken together, the data suggest that the clear amorphous inclusions may correspond to storage sites of structural and regulatory proteins. Consequently, these virus-induced structures may promote the productive cycle of adenoviruses by regulating the amount of over-produced viral proteins and the shutoff of the host cell metabolism.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    17
    Citations
    NaN
    KQI
    []