Folding of Fibroblast Growth Factor 1 Is Critical for Its Nonclassical Release

2016 
Fibroblast growth factor 1 (FGF1), a ubiquitously expressed pro-angiogenic protein that is involved in tissue repair, carcinogenesis, and maintenance of vasculature stability, is released from the cells via a stress-dependent nonclassical secretory pathway. FGF1 secretion is a result of transmembrane translocation of this protein. It correlates with the ability of FGF1 to permeabilize membranes composed of acidic phospholipids. Like several other nonclassically exported proteins, FGF1 exhibits β-barrel folding. To assess the role of folding of FGF1 in its secretion, we applied targeted mutagenesis in combination with a complex of biophysical methods and molecular dynamics studies, followed by artificial membrane permeabilization and stress-induced release experiments. It has been demonstrated that a mutation of proline 135 located in the C-terminus of FGF1 results in (i) partial unfolding of FGF1, (ii) a decrease in FGF1’s ability to permeabilize bilayers composed of phosphatidylserine, and (iii) drastic ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    8
    Citations
    NaN
    KQI
    []