Conducting Plant Experiments in Space and on the Moon.
2022
The growth and development of plants during spaceflight have important implications for both basic and applied research supported by NASA and other international space agencies. While there have been many reviews of plant space biology, this chapter attempts to fill a gap in the literature on the actual process and methods of performing plant research in the spaceflight environment. One of the authors (JZK) has been a principal investigator on eight spaceflight projects. These experiences include using the U.S. Space Shuttle, the former Russian Space Station Mir, and the International Space Station, utilizing the Space Shuttle and Space X as launch vehicles. While there are several ways to fly an experiment into space and to obtain a spaceflight opportunity, this review focuses on using the NASA peer-reviewed sciences approach to get an experiment manifested for flight. Three narratives for the implementation of plant space biology experiments are considered from rapid turn around of a few months to a project with new hardware development that lasted 6 years. The many challenges of spaceflight research include logistical and resource constraints such as crew time, power, cold stowage, data downlinks, among others. Additional issues considered are working at NASA centers, hardware development, safety concerns, and the engineering versus science culture in space agencies. The difficulties of publishing the results from spaceflight research based on such factors as the lack of controls, limited sample size, and the indirect effects of the spaceflight environment also are summarized. Lessons learned from these spaceflight experiences are discussed in the context of improvements for future space-based research projects with plants. We also will consider new opportunities for Moon-based research via NASA's Artemis lunar exploration program.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
79
References
0
Citations
NaN
KQI