Chronological profiling of plasma native peptides after hepatectomy in pigs: Toward the discovery of human biomarkers for liver regeneration

2017 
: Liver regeneration after partial hepatectomy (PHx) is a time-dependent process, which is tightly regulated by multiple signaling cascades. Failure of this complex process leads to posthepatectomy liver failure (PHLF), which is associated with a high rate of mortality. Thus, it is extremely important to establish a useful biomarker of liver regeneration to help prevent PHLF. Here, we hypothesized that alterations in the plasma peptide profile may predict liver regeneration following PHx and hence we set up a diagnostic platform for monitoring posthepatectomy outcome. We chronologically analyzed plasma peptidomic profiles of 5 partially hepatectomized microminipigs using the ClinProtTM system, which consists of magnetic beads and MALDI-TOF/TOF MS. We identified endogenous circulating peptides specific to each phase of the postoperative course after PHx in pigs. Notably, peptide fragments of histones were detected immediately after PHx; the presence of these fragments may trigger liver regeneration in the very acute phase after PHx. An N-terminal fragment of hemoglobin subunit α (3627 m/z) was detected as an acute-phase-specific peptide. In the recovery phase, the short N-terminal fragments of albumin (3028, 3042 m/z) were decreased, whereas the long N-terminal fragment of the protein (8926 m/z) was increased. To further validate and extract phase-specific biomarkers using plasma peptidome after PHx, plasma specimens of 4 patients who underwent PHx were analyzed using the same method as we applied to pigs. It revealed that there was also phase-specificity in peptide profiles, one of which was represented by a fragment of complement C4b (2378 m/z). The strategy described herein is highly efficient for the identification and characterization of peptide biomarkers of liver regeneration in a swine PHx model. This strategy is feasible for application to human biomarker studies and will yield clues for understanding liver regeneration in human clinical trials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    3
    Citations
    NaN
    KQI
    []