Amelioration potential of β-pinene on Cr(VI)-induced toxicity on morphology, physiology and ultrastructure of maize

2021 
Heavy metals' amassment in the soil environment is a threat to crop and agricultural sustainability and consequentially the global food security. For achieving enhancement of crop productivity in parallel to reducing chromium (Cr) load onto food chain demands continuous investigation and efforts to develop cost-effective strategies for maximizing crop yield and quality. In this context, we investigated the amelioration of Cr(VI) toxicity through β-pinene in experimental dome simulating natural field conditions. The protective role of β-pinene was determined on physiology, morphology and ultrastructure in Zea mays under Cr(VI) stress (250 and 500 μM). Results exhibited a marked reduction in the overall growth (shoot and root length and dry matter) of Z. mays plants subjected to Cr(VI) stress. Photosynthetic pigments (chlorophyll and carotenoids) were evidently reduced, and there was a loss of membrane integrity. Supplementation of β-pinene (100 μM), however, declined the toxicity induced by Cr(VI). Interestingly, Cr-tolerant abilities were improved in relation to plant growth, photosynthetic pigments and membrane integrity with the combined treatment of Cr(VI) and β-pinene. β-Pinene also reduced the root-mediated uptake of Cr(VI) and translocation to shoots. Moreover, significant ultrastructural damages recorded in roots and shoots under Cr(VI) stress were partially reverted upon addition of β-pinene. Our analyses revealed that β-pinene mitigates Cr(VI) toxicity in Z. mays, either by membrane stabilization or serving as a barrier to the uptake of Cr from soil. Thus, exogenous supply of β-pinene can be an effective alternative to mitigate Cr toxicity in soil. However, it is deemed essential to investigate further the responses throughout the life cycle of the plant on β-pinene supplementation under natural conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    0
    Citations
    NaN
    KQI
    []