A High-Order Local Discontinuous Galerkin Scheme for Viscoelastic Fluid Flow

2017 
Coping with the so called high Weissenberg number problem (HWNP) is a key focus of research in computational rheology. By numerically simulating viscoelastic flow a breakdown in convergence often occurs for different computational approaches at critically high values of the Weissenberg number. This is due to two major problems concerning stability in the discretization. First, we have a mixed hyperbolic-elliptic problem weighted by a ratio parameter between retardation and relaxation time of viscoelastic fluid. Second, we have a convection-dominated convection-diffusion problem in the constitutive equations. We introduce a solver for viscoelastic Oldroyd B flow with an exclusively high-order Discontinuous Galerkin (DG) scheme for all equations using a local DG formulation in order to solve the hyperbolic constitutive equations and using a streamline upwinding formulation for the convective fluxes of the constitutive equations. The successful implementation of the local DG formulation for Newtonian fluid with appropriate fluxes containing stabilizing penalty parameters is shown in two results. First, a hk-convergence study is presented for a non-polynomial manufactured solution for the Stokes system. Second, numerical results are shown for the confined cylinder benchmark problem for Navier-Stokes flow and compared to the same flow using a symmetric interior penalty method without additional constitutive equations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    0
    Citations
    NaN
    KQI
    []