Large-Scale Testing of Effects of Anti-Foam Agent on Gas Holdup in Process Vessels in the Hanford Waste Treatment Plant - 8280

2008 
The Hanford Waste Treatment and Immobilization Plant (WTP) will vitrify the radioactive wastes stored in underground tanks. These wastes generate and retain hydrogen and other flammable gases that create safety concerns for the vitrification process tanks in the WTP. An anti-foam agent (AFA) will be added to the WTP process streams. Previous testing in a bubble column and a small-scale impeller-mixed vessel indicated that gas holdup in a high-level waste chemical simulant with AFA was as much as 10 times higher than in clay simulant without AFA. This raised a concern that major modifications to the WTP design or qualification of an alternative AFA might be required to satisfy plant safety criteria. However, because the mixing and gas generation mechanisms in the small-scale tests differed from those expected in WTP process vessels, additional tests were performed in a large-scale prototypic mixing system with in situ gas generation. This paper presents the results of this test program. The tests were conducted at Pacific Northwest National Laboratory in a 1/4-scale model of the lag storage process vessel using pulse jet mixers and air spargers. Holdup and release of gas bubbles generated by hydrogen peroxide decomposition were evaluated in waste simulants containing an AFA over a range of Bingham yield stresses and gas generation rates. Results from the 1/4-scale test stand showed that, contrary to the small-scale impellermixed tests, holdup in the chemical waste simulant with AFA was not so greatly increased compared to gas holdup in clay without AFA. The test stand, simulants, scaling and data-analysis methods, and results are described in relation to previous tests and anticipated WTP operating conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    0
    Citations
    NaN
    KQI
    []