Effects of Hasten Drying and Storage Conditions on Properties and Microstructure of Konjac Glucomannan-Whey Protein Isolate Blend Films

2018 
Impact of drying process and storage conditions on properties of konjac glucomannan (KGM) and whey protein isolate (WPI) blend films was investigated. Hundred grams of film solution contained 0.4 g KGM, 3.8 g WPI and 1.5 g glycerol. During drying process, air velocity was varied to produce fast drying (3 h) and slow drying (15 h) in tray dryers under 50 °C. The high air velocity resulted in a significant higher drying rate in fast drying than low air velocity in slow drying. Drying curves from both processes were well-fitted with Page model and Henderson and Pabis model (R2 ≥ 0.98). Fast drying improved transparency and mechanical properties without impairing color, solubility or water vapor permeability (WVP). Fast-dried film had less surface roughness and contained larger protein clusters. It also had greater melting enthalpy of protein aggregates, implying stronger networks. For stability study, fast-dried film was stored at 4-35 °C for 24 days. Transparency decreased over time. Overall mechanical properties have improved during storage. Color, solubility and WVP did not significantly change over time at all conditions (p > 0.05). Microstructure of aged films was relatively similar to that of the freshly prepared film. Overall, the fast-dried KGM-WPI film exhibited reasonable storage stability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    4
    Citations
    NaN
    KQI
    []