language-icon Old Web
English
Sign In

Entropy and reversible catalysis.

2020 
I show that non-decreasing entropy provides a necessary and sufficient condition to convert the state of a physical system into a different state by a reversible transformation that acts on the system of interest and a further "catalyst" whose state has to remain invariant exactly in the transition. This statement is proven both in the case of finite-dimensional quantum mechanics, where von Neumann entropy is the relevant entropy, and in the case of systems whose states are described by probability distributions on finite sample spaces, where Shannon entropy is the relevant entropy. The results give an affirmative resolution to the (approximate) "catalytic entropy conjecture" introduced by Boes et al. [PRL 122, 210402 (2019)]. They provide a complete single-shot characterization without external randomness of von Neumann entropy and Shannon entropy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    10
    Citations
    NaN
    KQI
    []