Synthesis and characterization of ZnS:Cu,Al phosphor prepared by a chemical solution method

2003 
Abstract A novel and simple synthesis route for the production of ZnS:Cu,Al sub-micron phosphor powder is reported. Both the host and activator cations were co-precipitated from an ethanol medium by mixing with a diluted ammonium sulfide solution. The co-precipitated ZnS:Cu,Al was in cubic zinc blende structure after an intermediate-temperature furnace annealing. Strong photoluminescent and cathodoluminescent (CL) emission were observed, which was attributed to the 3d 10 -3d 9 4s 1 radiative transition at those copper sites. At an accelerating voltage of 1 kV, the CL intensity of the co-precipitated ZnS:Cu,Al sample was recorded 94% of the commercial reference phosphor with the same composition made by high temperature solid-state-reaction method. The particle size of the co-precipitated phosphor powders was found to be controllable simply through adjusting the reactant concentrations. The particle size of the annealed samples was measured by dynamic light scattering, which showed a mean particle diameter between 200 and 700 nm depending on the co-precipitation conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    55
    Citations
    NaN
    KQI
    []