A semi-analytical method for the dynamic analysis of cylindrical shells with arbitrary boundaries
2019
Abstract The dynamic behavior of cylindrical shells with arbitrary boundaries is studied in this paper. Love's shell theory and Hamilton's principle are employed to derive the motion equations for cylindrical shells. A semi-analytical methodology, which incorporates Durbin's inverse Laplace transform, differential quadrature method and Fourier series expansion technique, is proposed to investigate this phenomenon. The use of the differential quadrature method provides a solution in terms of the axial direction whereas the use of Durbin's numerical inversion method generates a solution in the time domain. Comparison of calculated frequency parameters to that derived from the literature illustrates the effectiveness of the method. Specifically, convergence tests indicate that the present approach has a rapid convergence, the time-history response and the Navier's solution are in great agreement. Comparisons between time-history responses derived by two shell theories show that the results fit well with each other when the thickness-radius ratios are small enough. An analysis of the influences of boundaries on the time-history response of cylindrical shells indicates that the peak displacement is closely related to the degrees of freedom of boundaries. The influences of the length-radius ratios and the thickness-radius ratios on the peak displacement are further investigated.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
39
References
10
Citations
NaN
KQI