Classification of pachychoroid on optical coherence tomography using deep learning.

2021 
PURPOSE Pachychoroid is characterized by dilated Haller vessels and choriocapillaris attenuation that are seen on optical coherence tomography (OCT) B-scans. This study investigated the feasibility of using deep learning (DL) models to classify pachychoroid and non-pachychoroid eyes from OCT B-scan images. METHODS In total, 1898 OCT B-scan images were collected from eyes with macular diseases. Images were labeled as pachychoroid or non-pachychoroid based on strict quantitative and qualitative criteria for multimodal imaging analysis by two retina specialists. DL models were trained (80%) and validated (20%) using pretrained convolutional neural networks (CNNs). Model performance was assessed using an independent test set of 50 non-pachychoroid and 50 pachychoroid images. RESULTS The final accuracy of AlexNet and VGG-16 was 57.52% for both models. ResNet50, Inception-v3, Inception-ResNet-v2, and Xception showed a final accuracy of 96.31%, 95.25%, 93.40%, and 92.61%, respectively, for the validation set. These models demonstrated accuracy on an independent test set of 78.00%, 86.00%, 90.00%, and 92.00%, and an F1 score of 0.718, 0.841, 0.894, and 0.920, respectively. CONCLUSION DL models classified pachychoroid and non-pachychoroid images with good performance. Accurate classification can be achieved using CNN models with deep rather than shallow neural networks.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    0
    Citations
    NaN
    KQI
    []