Structural Metastability and Quantum Confinement in Zn1-xCoxO Nanoparticles.

2016 
This paper investigates the electronic structure of wurtzite (W) and rock-salt (RS) Zn1–xCoxO nanoparticles (NPs) by means of optical measurements under pressure (up to 25 GPa), X-ray absorption, and transmission electron microscopy. W-NPs were chemically synthesized at ambient conditions and RS-NPs were obtained by pressure-induced transformation of W-NPs. In contrast to the abrupt phase transition in W–Zn1–xCoxO as thin film or single crystal, occurring sharply at about 9 GPa, spectroscopic signatures of tetrahedral Co2+ are observed in NPs from ambient pressure to about 17 GPa. Above this pressure, several changes in the absorption spectrum reveal a gradual and irreversible W-to-RS phase transition: (i) the fundamental band-to-band edge shifts to higher photon energies; (ii) the charge-transfer absorption band virtually disappears (or overlaps the fundamental edge); and (iii) the intensity of the crystal-field absorption peaks of Co2+ around 2 eV decreases by an order of magnitude and shifts to 2.5 eV....
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    78
    References
    4
    Citations
    NaN
    KQI
    []