A hybrid approach to extending selected configuration interaction and full configuration interaction quantum Monte Carlo

2019 
We present an approach to combining selected configuration interaction (SCI) and initiator full configuration interaction quantum Monte Carlo (i-FCIQMC). In the current i-FCIQMC scheme, the space of initiators is chosen dynamically by a population threshold. Here, we instead choose initiators as the selected space (V) from a prior SCI calculation, allowing substantially larger initiator spaces for a given walker population. While SCI+PT2 adds a perturbative correction in the first-order interacting space (FOIS) beyond V, the approach presented here allows a variational calculation in the same space, and a perturbative correction in the second-order interacting space. The use of a fixed initiator space reintroduces population plateaus into FCIQMC, but it is shown that the plateau height is typically only a small multiple of the size of V. Thus, for a comparable fundamental memory cost to SCI+PT2, a substantially larger space can be sampled. The resulting method can be seen as a complementary approach to SCI+PT2, which is more accurate but slower for a common selected/initiator space. More generally, our results show that approaches exist to significantly improve initiator energies in i-FCIQMC, while still ameliorating the fermion sign problem relative to the original FCIQMC method.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    0
    Citations
    NaN
    KQI
    []