MTH1 inhibitor TH588 induces mitosis-dependent accumulation of genomic 8-oxodG and disturbs mitotic progression

2019 
Reactive oxygen species (ROS) oxidise nucleotide triphosphate pools (e.g., 8-oxodGTP), which may kill cells if incorporated into DNA. Whether cancers avoid poisoning from oxidised nucleotides by preventing incorporation via the oxidised purine diphosphatase MTH1 remains under debate. Also, little is known about DNA polymerases incorporating oxidised nucleotides in cells or how oxidised nucleotides in DNA become toxic. We show replacement of one of the main DNA replicases in human cells, DNA polymerase delta (Pol δ), to an error-prone variant allows increased 8-oxodG accumulation into DNA following treatment with the MTH1 inhibitor (MTH1i) TH588. The resulting elevated genomic 8-oxodG correlates with increased cytotoxicity of TH588. Interestingly, no substantial perturbation of replication fork progression is observed, but rather mitotic progression is impaired and mitotic DNA synthesis triggered. Reducing mitotic arrest by reversin treatment prevents accumulation of genomic 8-oxodG and reduces cytotoxicity of TH588, in line with the notion that mitotic arrest is required for ROS build-up and oxidation of the nucleotide pool. Furthermore, we demonstrate delayed mitosis and increased mitotic cell death following TH588 treatment in cells expressing the error-prone Pol δ variant, which is not observed following treatments with anti-mitotic agents, thus linking incorporation of oxidised nucleotides and disturbed mitotic progression.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    0
    Citations
    NaN
    KQI
    []