Development of a post-processing method for estimating solidification parameters from finite-elementmodeling of laser remelting in directed energy deposition ofNi-Mn-Ga magnetic shape-memory alloy single crystals

2021 
Directed energy deposition is a subset of laser additive manufacturing which has been suggested as a feasible method for producing single crystals of metal alloys such as Ni-Mn-Ga magnetic shape-memory alloys. However, relating the thermal parameters, specifically the solidification front growth velocity V and thermal gradient G to the operational parameters, specifically the nominal laser power and travel velocity, is challenging. Therefore, this work aimed to use finite-element analysis (FEA) to create thermal models which allow for the determination of G and V for operational parameter combinations. Comparison with experimental data allowed for association of the range of G and V with the samples that best displayed single crystal growth. It was found that a high power and medium-low travel velocity is most likely to result in single crystal growth.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []