Structural Requirements of 5‐Hydroxytryptamine‐Moduline Analogues to Interact with the 5‐Hydroxytryptamine1B Receptor

2002 
Abstract : 5-Hydroxytryptamine-moduline is an endogenous cerebral tetrapeptide that regulates the activity of 5-hydroxytryptamine1B receptors. Direct binding of 5-[3H]hydroxytryptamine-moduline on rat brain homogenate evidenced the existence of two interacting sites for the peptide, very likely corresponding to different conformations of the 5-hydroxytryptamine1B receptor : The peptide first binds to a low-affinity state of the receptor (pIC50 = 7.68 ± 0.14) and then induces (or stabilizes) a high-affinity complex (pIC50 = 11.62 ± 0.18). This work focuses on the ability of 5-hydroxytryptamine-moduline analogues to recognize the high- and low-affinity sites for 5-hydroxytryptamine-moduline. The results obtained show that the two conformers of the 5-hydroxytryptamine1B receptor have similar but not identical binding pockets for 5-hydroxytryptamine-moduline. These two sites proved to be stereoselective and selective for tetrapeptides and favored the binding of peptides with hydrophobic amino acids in positions 1 and 4, serine in position 2, and a short amino acid in position 3. However, the serine in position 2 seems to be more important for the interaction of the peptide with the low-affinity site than the high-affinity one, which only needs a short hydrophobic amino acid in position 2.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    3
    Citations
    NaN
    KQI
    []