The design, synthesis, and antiviral activity of monofluoro and difluoro analogues of 4'-azidocytidine against hepatitis C virus replication: the discovery of 4'-azido-2'-deoxy-2'-fluorocytidine and 4'-azido-2'-dideoxy-2',2'-difluorocytidine.

2009 
The discovery of 4′-azidocytidine (3) (R1479) (J. Biol. Chem. 2006, 281, 3793; Bioorg. Med. Chem. Lett. 2007, 17, 2570) as a potent inhibitor of RNA synthesis by NS5B (EC50 = 1.28 μM), the RNA polymerase encoded by hepatitis C virus (HCV), has led to the synthesis and biological evaluation of several monofluoro and difluoro derivatives of 4′-azidocytidine. The most potent compounds in this series were 4′-azido-2′-deoxy-2′,2′-difluorocytidine and 4′-azido-2′-deoxy-2′-fluoroarabinocytidine with antiviral EC50 of 66 nM and 24 nM in the HCV replicon system, respectively. The structure−activity relationships within this series were discussed, which led to the discovery of these novel nucleoside analogues with the most potent compound, showing more than a 50-fold increase in antiviral potency as compared to 4′-azidocytidine (3).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    63
    Citations
    NaN
    KQI
    []