Suppression mechanism of radiation-induced darkening by Ce doping in Al/Yb/Ce-doped silica glasses: Evidence from optical spectroscopy, EPR and XPS analyses

2016 
Yb3+/Al3+ co-doped silica glasses with different Ce2O3 contents were prepared using the sol–gel method combined with high-temperature sintering. Changes in refractive index, absorption, emission and fluorescence lifetime of these glasses caused by X-ray irradiation were recorded and analyzed systematically. It is found that co-doping with certain amount of Ce could greatly improve the radiation resistance without evident negative effects on the basic optical properties of the Yb3+ ions in the near-infrared region. The nature of the radiation-induced color centres and the mechanism by which Ce prevented the formation of these centres were studied using optical absorption, electron paramagnetic resonance (EPR), and X-ray photoelectron spectroscopy (XPS) methods. Direct evidence confirmed that trapped electron centres (Yb2+/Si-E′/Al-E′) and trapped hole centres (Al-OHCs) were effectively inhibited by Ce doping, which was correlated to the coexistence of the redox couple Ce3+/Ce4+ in the glasses. These result...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    13
    Citations
    NaN
    KQI
    []