The C-terminal region and SUMOylation of Cockayne syndrome group B protein play critical roles in transcription-coupled nucleotide excision repair

2016 
Abstract Cockayne syndrome (CS) is a recessive disorder that results in deficiencies in transcription-coupled nucleotide excision repair (TC-NER), a sub-pathway of nucleotide excision repair, and cells from CS patients exhibit hypersensitivity to UV. CS group B protein (CSB), which is the gene product of one of the genes responsible for CS, belongs to the SWI2/SNF2 DNA-dependent ATPase family and has an ATPase domain and an ubiquitin-binding domain (UBD) in the central region and the C-terminal region, respectively. The C-terminal region containing the UBD is essential for the functions of CSB. In this study, we generated several CSB deletion mutants and analyzed the functions of the C-terminal region of CSB in TC-NER. Not only the UBD but also the C-terminal 30 amino acid residues were required for UV resistance and TC-NER. This region was needed for the interaction of CSB with RNA polymerase II, the translocation of CS group A protein to the nuclear matrix, and the association of CSB with chromatin after UV irradiation. CSB was modified by small ubiquitin-like modifier-2/3 in a UV-dependent manner. This modification was abolished in a CSB mutant lacking the C-terminal 30 amino acid residues; however, the substitution of lysine residues in this region to arginine did not affect SUMOylation or TC-NER. By contrast, substitution of a lysine residue in the N-terminal region to arginine decreased SUMOylation and resulted in cells with defects in TC-NER. These results indicate that both the most C-terminal region and SUMOylation are important for the functions of CSB in TC-NER.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    23
    Citations
    NaN
    KQI
    []