Large Antenna Array with Hybrid Beamforming System for 5G Outdoor Mobile Broadband Communication Deployments
2021
Millimeter wave (mmWave) communication requires large antenna arrays to increase the capability of cellular networks of the fifth generation with good beam-forming gains and a substantial reduction in path losses for both transmitting and receiving terminals. As large antenna arrays require one radio frequency chain per antenna element, the fully digital beamforming technique results in high cost and high-power consumption, and it is therefore not feasible. However, in analog solutions, adaptive gain control cannot be used as it reduces the likelihood of advanced processing and contributes to poor efficiency. Hybrid schemes are possible exciting solutions that overcome the deficiencies of pure digital or analog beam forming. The following are the three key contributions of the proposed work: a typical link budget specification for target data rate 3.10 Gbps in downlink and 0.6 Gbps in uplink is provided, micro strip patch antenna with a single element is designed to operate at 28 GHz and then converted into a standard linear array and a Kalman-based hybrid analog/digital precoding is used with a downlink rate of 4.64 Gbps/cell and an uplink rate of 1.84 Gbps/cell in multi-user environments. And the influence of both base station (BS) and 5G User equipment (UEs) beam steering capability is also explored. From the simulation result, it is evident that the proposed work offers a substantial increase in spectral efficiency approximately 9.28 bps/Hz at 20 dB with 10 channel paths.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
25
References
1
Citations
NaN
KQI