A multisystem-compatible deep learning-based algorithm for detection and characterization of angiectasias in small-bowel capsule endoscopy. A proof-of-concept study.

2021 
Abstract Background and aims Current artificial intelligence (AI)-based solutions for capsule endoscopy (CE) interpretation are proprietary. We aimed to evaluate an AI solution trained on a specific CE system (Pillcam®, Medtronic) for the detection of angiectasias on images captured by a different proprietary system (MiroCam®, Intromedic). Material and methods An advanced AI solution (Axaro®, Augmented Endoscopy), previously trained on Pillcam® small bowell images, was evaluated on independent datasets with more than 1200 Pillcam® and MiroCam® still frames (equally distributed, with or without angiectasias). Images were reviewed by experts before and after AI interpretation. Results Sensitivity for the diagnosis of angiectasia was 97.4% with Pillcam® images and 96.1% with Mirocam® images, with specificity of 98.8% and 97.8%, respectively. Performances regarding the delineation of regions of interest and the characterization of angiectasias were similar in both groups (all above 95%). Processing time was significantly shorter with Mirocam® (20.7 ms) than with Pillcam® images (24.6 ms, p Conclusion This proof-of-concept study on still images paves the way for the development of resource-sparing, “universal” CE databases and AI solutions for CE interpretation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    0
    Citations
    NaN
    KQI
    []