Is the nuclear matrix the site of DNA replication in eukaryotic cells

1986 
Abstract Four types of experiment were carried out to test the recently proposed model of matrix-bound replication in eukaryotic cells. In experiments with pulse-labelling we found preferential associaction of newly replicated DNA with the matrix only when the procedure for isolation includes first high-salt treatment of isolated nuclei and then digestion with nucleases, or when prior to digestion the nuclei have been stored for a prolonged time. In both cases, however, evidence was found that this preferential association is due to a secondary, artifactual binding of the newly replicated chromatin region to the matrix elements. Pulse-chase experiments and experiments with continuous labelling were carried out to answer the question whether during replication the DNA is reeled through the replication complexes, i.e., whether newly replicated DNA is temporarily or permanently associated with the matrix. The results showed that at that time the matrix DNA does not move from its site of attachment. Since, according to the model of matrix-bound replication, the forks are assumed to be firmly anchored to high-salt resistant proteinaceous matrix structures, the chromatin fragments isolated with endonuclease not recognizing newly replicated DNA and purified by sucrose gradient centrifugation should be free of replication intermediates. The electronmicroscopic analysis of such fragments revealed the existence of intact replication micro-bubbles. Moreover, the fragments with replication configurations appeared as smooth chromatin fibres not attached to elements characteristic for the matrix. All these experiments suggest that the nuclear skeleton is not a native site of DNA replication in eukaryotic cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    21
    Citations
    NaN
    KQI
    []