TBHQ-Overview of Multiple Mechanisms against Oxidative Stress for Attenuating Methamphetamine-Induced Neurotoxicity

2020 
Methamphetamine is a derivative of amphetamines, a highly addictive central stimulant with multiple systemic toxicity including the brain, heart, liver, lung, and spleen. It has adverse effects such as apoptosis and breakdown of the blood-brain barrier. Methamphetamine is a fatal and toxic chemical substance, and its lethal mechanism has been widely studied in recent years. The possible mechanism is that methamphetamine can cause cardiotoxicity and neurotoxicity mainly by inducing oxidative stress so as to generate heat, eliminate people’s hunger and thirst, and maintain a state of excitement so that people can continue to exercise. According to many research, there is no doubt that methamphetamine triggers neurotoxicity by inducing reactive oxygen species (ROS) production and redox imbalance. This review summarized the mechanisms of methamphetamine-induced neurotoxicity including apoptosis and blood-brain barrier breakdown through oxidative stress and analyzed several possible antioxidative mechanisms of tert-butylhydroquinone (TBHQ) which is a kind of food additive with antioxidative effects. As a nuclear factor E2-related factor 2 (Nrf2) agonist, TBHQ may inhibit neurotoxicity caused by oxidative stress through the following three mechanisms: the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system, the astrocytes activation, and the glutathione pathway. The mechanism about methamphetamine’s toxic effects and its antioxidative therapeutic drugs would become a research hotspot in this field and has very important research significance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    105
    References
    23
    Citations
    NaN
    KQI
    []