Modelling integrated power and transportation sectors decarbonization with hydrogen energy storage

2021 
The deployment of renewable energy sources, power-to-gas (P2G) systems, and zero-emission vehicles provide a synergistic opportunity to accelerate the decarbonization of both power and transportation system. This study investigates the prospects of implementing hydrogen P2G technology in coupling the power system and the transportation system. A novel coordinated long-term planning model of integrated power and transportation system (IPTS) at the regional scale is proposed to simulate the power system balance and travel demand balance simultaneously, while subject to a series of constraints, such as CO2 emission constraints. IPTS of Texas was investigated considering various CO2 emission cap scenarios. Results show unique decarbonization trajectories of the proposed coordinated planning model, in which IPTS prefers to decarbonizing the power sector firstly. When the power system reaches ultra-low carbon intensity, the IPTS then focuses on the road transportation system decarbonization. The results show that with the P2G system, IPTS of Texas could achieve 100% CO2 emission reductions (relative 2018 emissions level) by adding a combination of approximately 143.5 GW of wind, 50 GW of solar PV, and 40 GW of P2G systems with 2.5% renewables curtailment. The integration of the P2G system can produce hydrogen by use of surplus RES generation to meet hydrogen demand of Fuel cell electric vehicles (FCEVs) and to meet multi-day electricity supply imbalances.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []