ПЕТРОГЕНЕЗИС И СТРУКТУРНОЕ ПОЛОЖЕНИЕ РАННЕПРОТЕРОЗОЙСКИХ ЧАРНОКИТОВ ТАТАРНИКОВСКОГО КОМПЛЕКСА ЮЖНО-СИБИРСКОГО ПОСТКОЛЛИЗИОННОГО МАГМАТИЧЕСКОГО ПОЯСА СИБИРСКОГО КРАТОНА

2018 
The article reports on the geological, mineralogical, geochemical and isotope-geochemical studies of granitoids (charnockites) from the Tatarnikovsky massif located in the northern part of the Baikal uplift of the Siberian craton basement. The age of the studied granitoids is 1.85 Ga. Like other unmetamorphosed granitoids and associated volcanic, the granitoids dated 1.88–1.84 Ga are abundant in the southern area of the Siberian craton. These rocks are a part of the South Siberian post-collisional magmatic belt. The Tatarnikovsky granitoids form a series of small massifs confined to the Davan tectonic zone. However, unlike the rocks of the Davan zone, these granitoids have not been subjected to dynamometamorphism, mylonitization and metasomatism, and seem younger than the geologic structure of this zone. The formation of granitoids coincides in time with the youngest formations in the North Baikal volcanoplutonic belt (1.85–1.84 Ga). The Tatarnikovsky granitoids have two facies varieties – coarse-grained and medium-fine-grained porphyric, the transition being gradual. Considering the mineral composition of the granitoids, specifically the presence of orthopyroxene, these rocks can be classified as charnockites. The research results presented in this article are based on the study of charnockites in the Tatarnikovsky massif, the largest in the Tatarnikovsky complex. The chemical composition of the Tatarnikovsky coarse-grained granitoids corresponds to monzonite and syenite, and fine-grained porphyry granitoids are granosyenite. All the studied granitoids are close to alkaline and calc-alkaline, metaluminous (ASI=0.83–0.97), ferrous (FeO*/(FeO*+MgO)=0.86–0.89) granite, with high concentrations of Nb, Y, Zr, and Ba, and low concentrations of Sr. According to their geochemical characteristics, the Tatarnikovsky granitoids correspond to A-type granite. These rocks show negative values eNd(t)=–1.4…–3.5 and model age ТNdDM=2.4–2.5 Ga. The temperature estimated for the initial stages of crystallization of granitoid melts suggests that granitoids formed at high temperatures, 890–960°С (i.e. the zircon saturation temperature). The granitoid melts crystallized in hypabyssal conditions at the pressure of 2.2–2.9 kbar, as well as in conditions of low or moderate oxygen fugacity. According to the mineralogical, geochemical and isotope-geochemical data, the Tatarnikovsky charnockite could have resulted from melting of mafic rocks from the lower crust (gabbroid, and ferrodiorite) which are products of differentiation of the tholeiitic mantle magmas that had intruded into the base of the continental crust. Taking into account the high concentrations of Ba and the positive anomalies of Eu in the distribution spectra of rare-earth elements (REE) of the coarse-grained granitoids, it can be suggested that these granitoids are the products of partial melting of the crustalmafic source. The fine-grained porphyry granitoids with higher silica contents and lower Ba and Zr contents than those in the coarse-grained granitoids, as well as the negative anomalies of Eu in the REE distribution spectra, are the products of fractional crystallization of the granitoid melt. With regard to formation of the unified structure of the Siberian craton, the geodynamic setting for formation of the Tatarnikovsky charnockite is considered as postcollisional extension due to the fact that these rocks belong to the South Siberian post-collisional magmatic belt. However, on a more local scale of the Baikal uplift of the Siberian craton basement, we suggest that the intercontinental rifting setting was in place during the intrusion of the Tatarnikovsky granitoids, the rocks of the North Baikal volcanoplutonic belt, the granitoids of the Primorsky and Achadsky complexes that cross the rocks of the Akitkan fold belt, collision events in which ceased 1.98–1.97 Ga ago.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    3
    Citations
    NaN
    KQI
    []