Optical circulator analysis and optimization: a mini-project for physical optics

2017 
One of the mini-projects for the course of physical optics is reported. The project is designed to increase comprehension on the basics and applications of polarized light and birefringent crystal. Firstly, the students are required to analyze the basic principle of an optical circulator based on birefringent crystal. Then, they need to consider the engineering optimization problems. The key tasks include analyzing the polarization transforming unit (composed of a half-waveplate and a Faraday rotator) based on Jones matrix, maximizing the walk-off angle between e-ray and o-ray in birefringent crystal, separating e-ray and o-ray symmetrically, employment of a transformed Wollaston prism for input/output coupling of optical beams to fibers. Three years' practice shows that the project is of moderate difficulty, while it covers most of the related knowledge required for the course and helps to train the engineering thinking.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    0
    Citations
    NaN
    KQI
    []