Numerically simulated behavior of radiative Fe3O4 and multi-walled carbon nanotube hybrid nanoparticle flow in presence of Lorentz force

2021 
Free convection in hybrid nanomaterial-saturated permeable media is crucial in various engineering applications. The present study aims to investigate the free convection of an aqueous-based hybrid nanomaterial through a zone under the combined effect of the Lorentz force and radiation. The natural convection of the hybrid nanomaterial is modeled by implementing a control volume finite element method (CVFEM)-based code, whereas Darcy assumptions are used to model the porosity terms in the momentum buoyancy equation involving the average Nusselt number Nuave, flow streamlines, and isotherm profiles. A formula for estimating Nuave is proposed. The results show that the magnetic force retards the flow, and the fluid tends to attract the magnetic field source. Nuave is directly correlated with the Rayleigh number and radiation; however, it is indirectly dependent on the Hartmann number. Conduction is the dominant mode at larger Darcy and Hartmann numbers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    1
    Citations
    NaN
    KQI
    []