Thin film shape memory alloy microactuators

1996 
Thin film shape memory alloys (SMAs) have the potential to become a primary actuating mechanism for mechanical devices with dimensions in the micron-to-millimeter range requiring large forces over long displacements. The work output per volume of thin film SMA microactuators exceeds that of other microactuation mechanisms such as electrostatic, magnetic, thermal bimorph, piezoelectric, and thermopneumatic, and it is possible to achieve cycling frequencies on the order of 100 Hz due to the rapid heat transfer rates associated with thin film devices. In this paper, a quantitative comparison of several microactuation schemes is made, techniques for depositing and characterizing Ni-Ti-based shape memory films are evaluated, and micromachining and design issues for SMA microactuators are discussed. The substrate curvature method is used to investigate the thermo-mechanical properties of Ni-Ti-Cu SMA films, revealing recoverable stresses up to 510 MPa, transformation temperatures above 32/spl deg/C, and hysteresis widths between 5 and 13/spl deg/C. Fatigue data shows that for small strains, applied loads up to 350 MPa can be sustained for thousands of cycles. Two micromachined shape memory-actuated devices-a microgripper and microvalve-also are presented.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    465
    Citations
    NaN
    KQI
    []