Magnetic Anisotropy Effects on the Behavior of a Carbon Nanotube Functionalized by Magnetic Nanoparticles Under External Magnetic Fields

2012 
The behavior of a multiwalled carbon nanotube functionalized by magnetic nanoparticles through triethylene glycol chains is studied using molecular dynamics simulations. Particular attention is paid to the effect of magnetic anisotropy of nanoparticles which significantly affects the behavior of the system under an external magnetic field. The magnetization reversal process is coupled with the standard atomistic molecular dynamics equations of motion by utilizing the Neel–Brown model and the overdamped Langevin dynamics for description of the inertless magnetization displacements. The key results obtained in this study concern: an energetic profile of the system accompanying transition of a magnetic nanoparticle from the vicinity of the nanotube tip to its sidewall, that is from the capped configuration to the uncapped one; range of the magnetic anisotropy constant in which the system performs structural rearrangements under the external magnetic fields; range of the magnetic field strengths necessary for...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    18
    Citations
    NaN
    KQI
    []