Magnetic behavior of cobalt bromide hydrates including a deuterated form

2017 
Abstract The magnetic properties of little examined CoBr 2 •2H 2 O and new CoBr 2 •H 2 O and CoBr 2 •D 2 O are studied. Curie-Weiss fits, χ M =C/(T-θ), yield θ of −9.9, 9.4 and 10.0 K, respectively, over a 30–80 K linear range for each. Higher temperature data are fit assuming two moderately separated low lying Kramers doublets, with exchange accounted for in a mean-field approximation. Susceptibility maxima appear at 9.5, 15.4 and 15.5 K, with χ max of 0.163, 0.375 and 0.435 emu/mol, respectively. Antiferromagnetic ordering is estimated to occur at 9.0, 13.7 and 13.8 K, in the same order. The ratio T c /T max is 0.95, 0.89 and 0.89, respectively, suggesting little low dimensional magnetic character in singly hydrated systems. Data at lower temperatures for the dihydrate are fit with an antiferromagnetic 3D-Ising model. For singly hydrated systems the large size of χ max prevents this; weakened interchain antiferromagnetic interactions yield enhanced susceptibility maxima. Magnetization data exhibit field induced transitions near 13.5 kG for the dihydrate, and near 6.5 kG for singly hydrated systems with enhanced hysteresis. These transitions are interpreted as metamagnetic in nature.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    2
    Citations
    NaN
    KQI
    []