HDAC Regulates Transcription at the Outset of Axolotl Tail Regeneration

2019 
Tissue regeneration is associated with complex changes in gene expression and post-translational modifications of proteins, including transcription factors and histones that comprise chromatin. We tested 172 compounds designed to target epigenetic mechanisms in an axolotl (Ambystoma mexicanum) embryo tail regeneration assay. A relatively large number of compounds (N = 55) inhibited tail regeneration, including 18 histone deacetylase inhibitors (HDACi). In particular, romidepsin, an FDA-approved anticancer drug, potently inhibited tail regeneration when embryos were treated continuously for 7 days. Additional experiments revealed that romidepsin acted within a very narrow, post-injury window. Romidepsin treatment for only 1-minute post amputation inhibited regeneration through the first 7 days, however after this time, regeneration commenced with variable outgrowth of tailfin tissue and abnormal patterning. Microarray analysis showed that romidepsin altered early, transcriptional responses at 3 and 6-hour post-amputation, especially targeting genes that are implicated in tumor cell death, as well as genes that function in the regulation of transcription, cell differentiation, cell proliferation, pattern specification, and tissue morphogenesis. Our results show that HDAC activity is required at the time of tail amputation to regulate the initial transcriptional response to injury and regeneration.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    27
    Citations
    NaN
    KQI
    []