Dynamic 18F-FET PET is a powerful imaging biomarker in gadolinium-negative gliomas

2019 
BACKGROUND: We aimed to elucidate the place of dynamic O-(2-[18F]-fluoroethyl)-L-tyrosine (18F-FET) PET in prognostic models of gadolinium (Gd)-negative gliomas. METHODS: In 98 patients with Gd-negative gliomas undergoing 18F-FET PET guided biopsy, time activity curves (TACs) of each tumor were qualitatively categorized as either increasing or decreasing. Additionally, post-hoc quantitative analyses were done using minimal time-to-peak (TTPmin) measurements. Prognostic factors were obtained from multivariate hazards models. The fit of the biospecimen- and imaging-derived models was compared. RESULTS: A homogeneous increasing, mixed, and homogeneous decreasing TAC pattern was seen in 51, 19, and 28 tumors, respectively. Mixed TAC tumors exhibited both increasing and decreasing TACs. Corresponding adjusted 5-year survival was 85%, 47%, and 19%, respectively (P 25 min (TTPmin ≤ 12.5 min) tumors and IDH-mutant grade II (IDH-wildtype) gliomas. Outcome of mixed TAC tumors matched that of both intermediate TTPmin (>12.5 min and ≤25 min) and IDH-mutant, grade III gliomas. Each of the 3 prognostic clusters differed significantly from the other ones of the respective models (P < 0.001). CONCLUSION: TAC measurements constitute a powerful biomarker independent from tumor grade and IDH status.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    13
    Citations
    NaN
    KQI
    []