First-principles and Monte Carlo investigation of magnetic properties of two-dimensional transition metal alloyed boron-carbide CrFeBC sheet

2022 
Abstract We identify a new two-dimensional (2D) tetragonal phase of transition metal alloyed boron-carbide (t-CrFeBC) sheet through combined first-principles calculations and Monte Carlo (MC) simulations. The t-CrFeBC sheet prefers a ferromagnetic ground state with the metallic electronic property. Also, the t-CrFeBC sheet is dynamically and thermally stable. t-CrFeBC exhibits sizable magnetic anisotropy energy (MAE) of 120 μ e V per CrFe alloy with an in-plane easy axis (EA) magnetization direction. Moreover, hysteresis loops and other hysteresis related properties (coercivity and remanent magnetization) which are evidence of existence of ferromagnetism in the t-CrFeBC sheet are presented for a wide range of temperature. MC simulation results indicate that t-CrFeBC sheet is soft magnetic material with a small coercieve field and narrow rectangular shaped hysteresis curve near the room temperature. All results show that 2D t-CrFeBC sheet holds a unique promise for advanced magnetic device applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    0
    Citations
    NaN
    KQI
    []